Нейтрон: структурная связь «на приросте масс. Нейтроны распадаются и с излучением фотонов На что распадается нейтрон

Протон-нейтронная модель ядра вполне удовлетворяет физиков и по сей день считается лучшей. Тем не менее, на первый взгляд она вызывает некоторые сомнения. Если атомное ядро состоит только из протонов и нейтронов, снова возникает вопрос о том, как могут вылететь из него отрицательно заряженные электроны в виде?-частиц. А что если электронов в ядре нет и они образуются в момент распада? Применим законы сохранения в поисках правильного решения.

Образование электрона означает возникновение отрицательного электрического заряда. Но по закону сохранения электрического заряда отрицательный заряд не может образоваться, пока одновременно не возникнет положительный. Однако ни одна положительно заряженная частица не вылетает из ядра вместе с?-частицей следовательно, такая частица должна остаться внутри ядра. Известно, что внутри ядра существует одна-единственная положительно заряженная частица - протон. Из всего сказанного следует, что, когда из ядра вылетает электрон, внутри ядра образуется протон. Перейдем к закону сохранения энергии. Протон обладает массой, и если он образуется, где-то в другом месте должна исчезнуть масса. Во всех ядрах, кроме водорода-1 присутствуют нейтроны. Будучи незаряженным, нейтрон появляется или исчезает, не нарушая закон сохранения электрического заряда. Следовательно, при излучении?-частицы внутри ядра исчезает нейтрон и одновременно возникает протон (рис. 4). Другими словами, нейтрон превращается в протон, испуская при этом электрон. Нарушение закона сохранения энергии не наблюдается, так как нейтрон чуть-чуть тяжелее протона. Протон и электрон вместе имеют массу 1,008374 по шкале атомных весов, а масса нейтрона равна 1,008665. При превращении нейтрона в электрон и протон масса 0,00029 «исчезает». В действительности она превращается в кинетическую энергию вылетающей?-частицы, равную примерно 320 кэв.

Рис. 4. Излучение?-частицы.

Такое объяснение кажется удовлетворительным, поэтому подведем итог, используя по возможности простую систему символов. Обозначим нейтрон n, протон p + , электрон е — и запишем уравнение излучения?-частицы:

n > р + + е — .

Наши рассуждения только косвенно отражают то, что происходит внутри ядра. В действительности нельзя заглянуть внутрь ядра и увидеть, как протон превращается в нейтрон, когда вылетает заряженный электрон. По крайней мере, до сих пор нельзя. А можно ли наблюдать отдельные нейтроны в свободном состоянии? Будут ли они, так сказать, на наших глазах превращаться в протоны и испускать быстрые электроны?

В 1950 году физикам удалось, наконец, получить ответ. Свободные нейтроны время от времени распадаются и превращаются в протоны, причем происходит это не часто. Каждый раз, когда нейтрон претерпевает такое изменение, излучается электрон.

Нейтроны существуют в свободном состоянии до тех пор, пока не произойдет распад, и вопрос о том, как долго длится этот период, очень важен. Когда конкретно нейтрон претерпит радиоактивный распад, - сказать невозможно. Процесс этот носит случайный характер. Один нейтрон существует, не распадаясь, одну миллионную долю секунды, другой - пять недель, третий - двадцать семь миллиардов лет. Тем не менее, для большого количества частиц одного типа с достаточной степенью точности можно предсказать, когда распадется определенный процент их. (Аналогичным образом страховой статистик не может предсказать, как долго будет жить отдельный человек, но для большой группы людей определенного возраста, профессии, места жительства т. д. со значительной точностью он может предсказать, через сколько времени половина из них умрет.)

Время, в течение которого распадается половина частиц данного типа, называют обычно периодом полураспада частицы. Этот термин был введен Резерфордом в 1904 году. Каждый вид частиц имеет свой собственный характерный период полураспада. Например, период полураспада урана-238 4,5·10 9 лет, тория-232 гораздо больше - 1,4·10 10 лет. Поэтому уран и торий до сих пор встречаются в значительных количествах в земной коре, несмотря на то что в каждый момент некоторые из их атомов распадаются. В течение всей пятимиллиардной истории Земли распалась только половина запасов урана-238 и гораздо меньше половины запасов тория-232.

Некоторые радиоактивные ядра гораздо менее стабильны. Например, когда уран-238 излучает?-частицу, он превращается в торий-234. Период полураспада тория-234 только 24 дня, поэтому в земной коре имеются лишь следы этого элемента. Он очень медленно образуется из урана-238 и, образовавшись, очень быстро распадается.

Распадаясь, торий-234 излучает?-частицу. Внутри ядра тория нейтрон превращается в протон. Это превращение тория-234 происходит с такой скоростью, что период полураспада равен двадцати четырем дням, В других радиоактивных изотопах нейтроны гораздо медленнее превращаются в протоны. Например, калий-40 излучает?-частицы с периодом полураспада 1,3·10 9 лет. Некоторые изотопы вовсе не подвержены радиоактивному распаду. Так, в ядрах атомов кислорода-16, насколько известно, ни один нейтрон сам по себе не превращается в протон, т. е. период полураспада бесконечен. Однако нас больше всего интересует период полураспада свободного нейтрона. Свободный нейтрон не окружен другими частицами, которые делали бы его более или менее стабильным, удлиняя или укорачивая его период полураспада, т. е. в случае свободного нейтрона мы имеем, так сказать, неискаженный период полураспада. Оказывается, он равен примерно двенадцати минутам, следовательно, половина из триллиона нейтронов превращается в протоны и электроны в конце каждой двенадцатой минуты.

  • Перевод

Факт, ставящий в тупик многих из тех, кто впервые изучает природу обычной материи – то, что в ядре любого атома тяжелее водорода содержатся как протоны, так и нейтроны, но при этом нейтроны распадаются (дезинтегрируются в другие частицы) в среднем за 15 минут! Как же могут ядра углерода, кислорода, азота, кремния быть настолько стабильными, если нейтроны, из которых они состоят, не могут выживать сами по себе?

Ответ на этот вопрос оказывается очень простым после того, как вы поймёте, как работает энергия: это чистая бухгалтерия. Но понять энергию вовсе не просто. Для начала нужно прочесть . А до этого необходимо ознакомиться со . Эти концепции нужно представлять перед тем, как понять ответ на заданный вопрос.

Если вы прочли статью об энергии взаимодействия, вы знаете, что атом водорода состоит из протона и электрона, которые, из-за отрицательной энергии связи, неспособны убежать друг от друга – они заперты внутри атома. Отрицательная энергия связи происходит из отрицательной энергии взаимодействия, частично сбалансированной положительной энергией движения электрона (и немного – протона). Энергия взаимодействия происходит из воздействия электрона на электрическое поле близ протона (и наоборот).

В этой статье я объясню, почему нейтрон стабилен в следующем по простоте ядре атома: дейтроне, ядре «тяжёлого водорода» или «дейтерия». Дейтрон состоит из одного нейтрона и одного протона – в принципе просто, и не слишком отличается от атома водорода с одним электроном и одним протоном. Поняв, почему нейтрон стабилен в дейтроне, вы поймёте основной принцип, по которому нейтроны могут быть стабильны внутри всех стабильных ядер. Суть в следующем: энергия взаимодействия протонов и нейтронов отрицательная, и достаточно большая, поэтому в некоторых ядрах распад нейтрона привёл бы к росту энергии системы (состоящей остатков ядра после его распада и всех испущенных при распаде частиц), что нарушило бы закон сохранения энергии. Поскольку энергия должна сохраняться, распад невозможен.

Не буду описывать взаимодействие нейтрона с протоном, поскольку за это отвечает сильное взаимодействие, гораздо более сложное, чем электрическое (и магнитное) взаимодействия между протоном и электроном, составляющими атом водорода. Частично эта сложность объясняется составным характером взаимодействия – это немного похоже на то, как электромагнитное взаимодействие может связывать два атома водорода в молекулу водорода, хотя оба атома электрически нейтральны. Но некоторые важные детали эта аналогия не охватывает. Ядерная физика – это отдельная тема.

Рис. 1

К счастью, нам эти сложности не нужны. Нам нужно знать, что эти силы создают отрицательную энергию взаимодействия для системы из протона, нейтрона и различных сложных полей, позволяющих им влиять друг на друга. В результате получается стабильный дейтрон. Так же, как атом водорода не может внезапно распасться на электрон и протон, дейтрон не может внезапно распасться на нейтрон и протон.

Это не означает, что дейтрон или атом водорода нельзя уничтожить. Можно «ионизировать» атом водорода (выбить электрон у протона), если добавить внешнюю энергию – в виде, допустим, достаточно энергичного фотона. Тот же метод можно использовать для разбивания дейтерия и выбивания нейтрона у протона. Но энергию для этого нужно получить вне системы; ни водород, ни дейтрон самостоятельно распадаться не будут.

Нейтрон может распадаться

Давайте вспомним необходимое (но не достаточное) условие для распада объекта – масса начального объекта должна превосходить сумму масс объектов, на которые он распадается. Откуда берётся это условие? Из закона сохранения энергии. Скоро мы увидим, как и почему (как обычно, под массой я понимаю «массу покоя»).


Рис. 2

Проверим, что это условие выполняется для нейтрона, который может распадаться на протон, электрон и электронное антинейтрино. Распад показан на рис 2; нейтрон спонтанно превращается в три эти частицы. Нейтрон и протон на самом деле больше по размеру, чем электрон и антинейтрино – хотя рисунок всё равно сделан не в масштабе. Диаметр нейтрона или протона составляет примерно одну миллиардную триллионной доли метра (в 100 000 раз меньше атома), а про диаметр электрона или нейтрино известно, что он как минимум ещё в 1000 раз меньше этого.

На рис. 3 изображена энергетическая бухгалтерия (см. рис. 1). До распада нейтрона энергия всей системы равна энергии массы (E = mc 2) нейтрона. Масса нейтрона равна 0,939565… ГэВ/c 2 .

Многоточие говорит о том, что это не точное значение, но пока нам не нужна большая точность. Значит, энергия массы нейтрона

0,939565… ГэВ/c 2

После распада нейтрона какой будет энергия всей системы? Поскольку энергия сохраняется, а извне энергии не поступало, то энергия системы будет равна тому же самому - 0,939565… ГэВ!

Но как она распределится?

Во-первых, у нас не будет энергии взаимодействия. Это не очевидно, но очень важно. Когда протон, электрон и антинейтрино разлетаются, энергия их взаимодействия становится пренебрежимо малой.

Во-вторых, у каждой из частиц есть энергия массы. Сколько её там?
Энергия массы протона – 0,938272… ГэВ.
Энергия массы электрона – 0,000511… ГэВ.
Энергией массы антинейтрино можно пренебречь, настолько она мала.

И это хорошо, поскольку масса нейтрино нам пока неизвестно. Мы знаем, что она, по крайней мере, гораздо меньше, чем 0,000001 ГэВ.

Итоговая масса-энергия получается равной

(0,938272… + 0,000511… + 0,000000…) ГэВ = 0,938783… ГэВ

Что меньше энергии массы нейтрона, с которой мы начали, на 0,000782… ГэВ. Пока что мы не видим, как она сохраняется. Энергия массы нейтрона не полностью превратилась в энергию массы протона, электрона и нейтрино. Излишки энергии на рис. 3 показаны жёлтым.


Рис. 3

Разницу можно восполнить при помощи энергии движения. Она всегда положительна. Нам нужно только распределить лишние 0,000782… ГэВ между движениями частиц так, чтобы сохранялся импульс системы (поверьте мне, это возможно). Тогда энергия будет сохранена, поскольку энергия массы нейтрона превратилась в энергию массы и энергию движения протона, электрона и нейтрино.

Я не указал точное количество энергии движения, отошедшее протону, электрону и нейтрино, поскольку в каждом из случаев распада нейтрона энергия будет распределяться по-разному, просто случайным образом (такова квантовая механика). Только общая энергия движения будет всегда одной и той же, 0,000782… ГэВ.

Дейтрон стабилен

Вернёмся к дейтрону. Общая энергия дейтрона, как и у атома водорода, состоит из положительной энергии массы двух его составляющих (протона и нейтрона), положительной энергии движения двух составляющих, и отрицательной энергии взаимодействия, с лихвой покрывающей энергию движения. Более того, как и для любой частицы или системы, масса дейтрона будет равной его общей энергии (точнее – общей энергии, которую вы измеряете, когда он не двигается относительно вас), делённой на с 2 , квадрат скорости света. Соответственно, если дейтрон относительно вас покоится, на основе его измеренной массы, равной 1,875612… ГэВ/с 2 , можно сказать, что его энергия равна

Энергия массы дейтрона = 1,875612… ГэВ =
Энергия массы протона + энергия массы нейтрона,
Энергия движения протона + энергия движения нейтрона,
Энергия взаимодействия (отрицательная, и больше по модулю, чем энергия движения).

< энергия массы протона + энергия массы нейтрона

0,938272… ГэВ+ 0,939565… ГэВ = 1,877837… ГэВ

Поэтому энергия связи дейтрона равна

1,875612… ГэВ – 1,877837… ГэВ = -0,002225… ГэВ


Рис. 4

Отрицательная энергия связи означает, как и в случае с атомом водорода, что дейтрон не может просто развалиться на нейтрон и протон, как показано на рис. 4. Это нарушило бы сохранение энергии, утверждающее, что распадающаяся частица должна быть более массивной, чем частицы, на которые она распадается. Как показано на рис. 5, энергию никак не сохранишь. У нейтрона и протона больше энергии массы, чем у дейтрона, и нет никакого источника отрицательной энергии, способного погасить дефицит энергии, поскольку энергии взаимодействия между далеко разнесёнными протоном и нейтроном нет, а энергия движения отрицательной не бывает. Это значит, что процесс на рис. 4 произойти не может.


Рис. 5

Нейтрон внутри дейтрона не может распаться

Остался один шаг, и он, по сравнению с предыдущими, довольно простой. Вопрос в следующем: почему нейтрон не может распадаться внутри дейтрона?

Допустим, он распался: что останется? Тогда у нас будет два протона, электрон и антинейтрино; см. рис. 6. Два протона отталкиваются – у них положительный электрический заряд, и электрическая сила расталкивает их. Сильное ядерное взаимодействие, пытающееся притянуть их вместе, не такое сильное, как у нейтрона с протоном, и суммарное действие двух сил будет отталкивающим. В результате это взаимодействие будет расталкивать протоны. А электрон и антинейтрино тем временем также покинут место действия.


Рис. 6

Когда все четыре частицы будут далеко друг от друга (как грубо показано на рис. 6, но представьте, что они разлетелись ещё дальше), не будет никакой значительной энергии взаимодействия между ними. Энергия системы будет состоять только из суммы энергий масс частиц и энергий движения. Поскольку энергия движения всегда положительна, минимальная энергия, которую смогут иметь частицы, будет равной сумме их энергий масс. Но эта энергия больше, чем энергия массы дейтрона (рис. 7)! Даже энергия массы двух протонов, 1,876544… ГэВ уже больше энергии массы дейтрона. А дополнительные 0,000511 ГэВ только сыплют соль на рану.

Поэтому нейтрон внутри дейтрона не может распасться; энергия взаимодействия, удерживающая дейтрон, тянет его массу вниз – достаточно низко для того, чтобы распад нейтрона внутри дейтрона нарушал сохранение энергии!


Рис. 7

Другие атомные ядра

И так происходит со всеми стабильными ядрами в природе. Но не надо думать, что всегда, когда вы комбинируете нейтроны и протоны, в результате получается стабильное ядро! Стабильные ядра крайне редки.

Если вы возьмёте Z протонов и N нейтронов и попробуете сделать из них ядро, то для большей части вариантов Z и N у вас ничего не получится. Большинство таких ядер мгновенно распадутся, они вообще не сформируются. Грубо говоря, сила притяжения между Z протонами и N нейтронами сильнее всего тогда, когда Z примерно равно N. С другой стороны, протоны отталкиваются друг от друга из-за электромагнитного взаимодействия. Эта сила увеличивается при увеличении Z. Соревнование двух этих эффектов предполагает, что ядро скорее всего будет стабильным, когда Z немного меньше N; и чем больше Z и N, тем больше должна быть разница между Z и N. Это видно на рис. 8. Стабильны только ядра, отмеченные чёрным; они располагаются в том, что поэтически называют «долиной стабильности».

А что за ядра, обозначенные цветом? Оказывается, что существует довольно много ядер, которые всё-таки распадаются, но могут жить довольно долго. Часто мы зовём такие объекты «нестабильными», а те, что живут достаточно долго – «метастабильными». Использование слов зависит от контекста. Нейтрон живёт 15 минут. Есть ядра, живущие несколько миллисекунд, дней, десятилетий, тысячелетий и даже миллиардов лет. Эти ядра мы называем радиоактивными; это опасные последствия случаев с участием радиации или оружия, и инструменты, используемые в детекторах дыма и для борьбы с раком, в числе прочего.

Есть куча способов, которыми эти ядра могут распасться, но некоторые из них распадаются, превращая нейтрон в протон внутри ядра. Мы знаем об этом по увеличению заряда ядра и по тому, что из него вылетает электрон вместе с антинейтрино. Другие даже могут распадаться, превращая протон в нейтрон! Мы знаем об этом, потому что заряд ядра уменьшается, и из него вылетает позитрон (антиэлектрон). Подсчётами того, сколько сможет прожить определённое ядро и как оно распадётся, занимается очень сложная ядерная физика – здесь курс по ней я давать не буду (да я и не эксперт).


Рис. 8

Достаточно сказать, что отрицательная энергия взаимодействия частиц, скомбинированная с сохранением энергии, может менять всю игру, делая невозможными определённые процессы, возможные в обычных условиях – и наоборот.

Физики из Калифорнийского университета в Сан-Диего предложили объяснить с помощью темной материи расхождение между «бутылочными» и «пучковыми» экспериментами по определению времени жизни свободного нейтрона. Для этого около одного процента распадов нейтронов должно содержать в качестве конечного продукта частицу темной материи, масса которой практически совпадает с массой протона. Статья опубликована в Physical Review Letters , кратко о ней сообщает Physics .

В связанном состоянии (внутри атомного ядра) нейтроны могут жить неограниченно долго, однако свободные нейтроны быстро распадаются. Как правило, продуктами такого распада выступает протон, электрон и электронное антинейтрино n p + e − + ν e * (так называемый ), хотя Стандартная модель разрешает и более экзотические процессы, например, радиативный бета-распад или распад с образованием атома водорода. Теоретические оценки на время жизни свободного нейтрона, распадающегося по такому каналу, существенно зависят от величины константы связи аксиального вектора с обычным (axial-vector to vector coupling ratio), которая измерена с относительной погрешностью около 0,2 процента. Это мешает точно оценить время жизни нейтрона. В настоящее время теоретические расчеты предсказывают продолжительность жизни от 875 до 891 секунды, то есть порядка 15 минут.

С другой стороны, время жизни нейтрона можно измерить напрямую, причем сразу двумя легко реализуемыми на практике способами. В первом типе экспериментов ученые охлаждают частицы до низкой температуры, помещают их в гравитационную ловушку , напоминающую по своей форме вытянутую бутылку, и измеряют, как число нейтронов в ловушке N зависит от времени. Сравнивая затем измеренную экспериментально зависимость с экспоненциальным законом N ~ exp(−t /τ), можно найти характерное время жизни нейтрона τ = τ бутылка. Во втором типе экспериментов физики получают пучок нейтронов и измеряют, сколько в нем содержится протонов, образовавшихся в результате бета-распада. Это позволяет определить скорость распада , а следовательно, и его характерное время, совпадающее со временем жизни нейтрона τ = τ пучок.

Проблема заключается в том, что результаты измерений, выполненных различными способами, отличаются почти на десять секунд - в то время как бутылочные эксперименты дают значение τ = 879,6±0,6 секунд, эксперименты с пучками приводят к заметно большему значению τ = 888±2 секунды. Таким образом, расхождение между этими результатами достигает 4 . Причинами подобного расхождения могут быть как систематические ошибки, упущенные из виду сразу несколькими группами экспериментаторов, так и фундаментальные механизмы, указывающие на физику за пределами Стандартной модели.

Физики Бартош Форнал (Bartosz Fornal) и Бенджамин Гринштейн (Benjamín Grinstein) предлагают объяснить расхождение между результатами различных экспериментов с помощью . В самом деле, в «пучковом» способе предполагается, что в результате распада сто процентов нейтронов превращается в протоны плюс еще какие-нибудь менее массивные частицы (фотоны, нейтрино и так далее). Если же небольшая часть этих распадов будет происходить по «невидимому» каналу, то есть будет содержать в качестве конечных продуктов частицу темной материи, очень слабо взаимодействующую с веществом, то скорость распада и рассчитанное на ее основе время жизни надо будет немного подкорректировать. Грубо говоря, при наличии «невидимого» канала скорость распада занижается, и экспериментаторам кажется, будто нейтроны живут немного дольше. Если точнее, истинное время жизни можно восстановить, если умножить время τ пучок на отношение Br между числом реакций с участием частиц Стандартной модели и полным числом реакций (физики называют такое отношение «коэффициентом ветвления» , branching ratio). Чтобы увязать результаты «бутылочных» и «пучковых» экспериментов, отношение должно быть примерно равно Br ≈ 0,99, то есть около одного процента распадов должны идти по «невидимому» каналу.

Ученые предлагают два возможных канала распада с участием частиц темной материи. Один из них «невидим» полностью (включает в качестве конечных продуктов только частицы темной материи), а другой «невидим» только частично, то есть помимо массивной частицы темной материи содержит сравнительно легкие частицы Стандартной модели - фотоны, электроны, позитроны и так далее. К сожалению, при введении в теорию подобных каналов становится возможным распад протона, который на практике не наблюдается ; тем не менее, физики показали, что такие распады будут запрещены, если масса «невидимой» частицы будет лежать в диапазоне от 937,9 до 939,6 мегаэлектронвольт. Кроме того, дальнейший распад частицы с образованием протона будет невозможен, если ее масса будет меньше, чем 938,8 мегаэлектронвольт. При таком условии время жизни образовавшейся частицы будет довольно большим, что делает ее хорошим кандидатом на роль частицы темной материи.


«Невидимый» распад нейтрона на частицы темной материи

B. Fornal & B. Grinstein / Phys. Rev. Lett.


«Частично невидимый» распад нейтрона на частицу темной материи и фотон

B. Fornal & B. Grinstein / Phys. Rev. Lett.


Наконец, физики более подробно изучили каждый из двух возможных каналов и уточнили параметры частиц, которые в них образуются. Так, например, энергия фотонов, которые рождаются наряду с долгоживущими частицами темной материи в «частично невидимом» канале, лежит в диапазоне от 0,782 до 1,664 мегаэлектронвольт, причем фотоны должны быть монохроматичны (то есть их энергия во всех распадах одинакова). Если же требование долгого времени жизни с частицы снять, нижняя граница на энергию фотонов исчезнет.

Хотя статья физиков в Physical Review Letters вышла только на прошлой неделе, на сайте препринтов arXiv.org она была опубликована еще 3 января 2018 года. Поэтому несколько групп ученых уже успели применить идеи Форнала и Гринштейна в своей работе. В частности, группа исследователей из Америки и Франции уже попытались обнаружить фотоны, которые рождаются в результате «частично невидимых» распадов нейтронов, просканировав диапазон энергий от 0.782 до 1.664 мегаэлектронвольт, - однако им так и не удалось зарегистрировать заметного сигнала, что исключает образование долгоживущих частиц темной материи в ходе распадов. Другие группы рассмотрели , как «невидимые» распады будут сказываться на эволюции нейтронных звезд - оказалось, что если бы такие распады действительно происходили, масса звезд быстро бы уменьшалась. Это противоречит наблюдениям астрономов; следовательно, в нейтронных звездах «невидимые» распады должны быть запрещены. Наконец, еще одна группа ученых показала , что аномально высокое содержание атомов 10 Be в продуктах распада 11 Be можно объяснить с помощью тех же самых механизмов, что и при распаде нейтрона.

Пока что ученым так и не удалось поймать в прямом эксперименте частицы темной материи, так что все свидетельства в пользу ее существования носят исключительно гравитационный характер. Вместо этого физики установили очень жесткие ограничения на сечение взаимодействия вимпов с веществом - так, наибольшее возможное значение этого сечения сейчас величиной порядка 10 −45 квадратных сантиметров. Тем не менее, исследователи не теряют надежды на успех - продолжают существующие экспериментальные установки, новые типы детекторов, ищут частицы темной материи других видов (например, или ), а также альтернативные способы детектирования частиц.

Дмитрий Трунин

Позитронный распад

Двойной электронный распад

Электронный распад

При электронном распаде ядро испускает электрон и электронное антинейтрино . Так как при электронном распаде образуется более двух частиц, то спектр энергий электронов оказывается непрерывным . При этом энергия отдельного электрона непредсказуема. Можно определить только максимальную энергию электрона. Эта энергия равна энергии распада. Электронный распад возникает у нейтроноизбыточных ядер с энергией распада больше нуля. При электронном распаде дочернее ядро образуется не обязательно в основном состоянии.

В достаточно редких случаях энергетически возможен распад с одновременным вылетом двух электронов. Этот процесс возможен при условии, что масса ядра m (A ,Z +1), которое могло бы возникнуть при электронном распаде, оказывается больше массы ядра m (A , Z ), а для массы ядра m (A , Z +2) выполняется условие m (A , Z )> m (A , Z +2)+2m e c 0 2 .

Анализ показывает, что в природе существуют десятки ядер, которые способны к двойному электронному распаду.

Позитронный распад возникает у нейтронодефицитных ядер . По всем своим свойствам позитронный распад является полной аналогией электронного распада . Однако, если электронный распад возможен только у нейтроноизбыточных ядер, то позитронный распад возможен только у ядер с избытком протонов. Спектры электронов и позитронов подобны, но между электроном и ядром существует кулоновское притяжение, а между позитроном и ядром - кулоновское отталкивание. Поэтому спектр позитронов оказывается смещенным в сторону больших энергий.

При достаточно больших энергиях возбуждения ядро может испускать нейтроны. При испускании нейтронов Δ N =1, Δ A =1. Энергетически нейтронный распад возможен, если энергия возбуждения ядра будет больше энергии связи нейтрона в ядре . Экспериментально показано, что нейтронный распад происходит в ядре Li с уровней энергии с энергией 3,21 МэВ (513,6 фДж), 6,53 МэВ (1044,8 фДж). В целом же можно считать, что в области средних масс для нейтронного распада необходимы энергии возбуждения около 9 МэВ (1440 фДж).

Спектр энергии испускаемых нейтронов оказывается непрерывным . Очевидно, что процесс нейтронного распада облагается для ядра избытком нейтронов . Вместе с тем, данные о массах ядра вроде бы указывают не то, что при любом избытке нейтронов, энергия связи нейтронов остается положительной. Следствием этого является невозможность нейтронного распада из основного состояния ядра.

Иногда после бета - распада образовавшееся ядро, оставшееся возбужденным, распадается дальше с испусканием нейтрона. Энергия возбуждения при этом уносится вылетающими нейтронами. Такие нейтроны называютсязапаздывающими. Запаздывание процесса последующего нейтронного распада связано с медлительностью предыдущего бета - распада. Нейтронный распад происходит с очень малым периодом полураспада.

Понравилась статья? Поделитесь с друзьями!