Определение органических веществ с помощью качественных реакций. Качественные реакции на неорганические и органические вещества (9 класс). Качественные реакции органических веществ

NH ; Na + ; K + ; Mg 2+ ; Ba 2+ ; Ca 2+ ; Fe 2+ ; Fe 3+ ; Mn 2+ ; Co 2+ ; Ni 2+ ; Zn 2+ ;

Al 3+ ; Cr 3+ ; Ag + ; Pb 2+ ; Cu 2+ ; Cd 2+ .

Реакция на ион Na +

Ионы натрия образуют с дигидроантимонатом калия в нейтральной или слабощелочной среде белый кристаллический осадок дигидроантимоната натрия:

2NaCl + K 2 H 2 SbO 4 = Na 2 H 2 SbO 4 ↓ + 2KCl

2Na + + H 2 SbO = Na 2 H 2 SbO 4 ↓

Потирание изнутри стенок пробирки стеклянной палочкой и охлаждение пробирки под холодной струей воды ускоряет осаждение.

Реакция на ион K +

1. Гидротартрат натрия образует с раствором солей калия белый кристаллический осадок гидротартрата калия:

KCl + NaHC 4 H 4 O 6 = KHC 4 H 4 O 6 ↓ +NaCl

K + +HC 4 H 4 O 6 - = KHC 4 H 4 O 6 ↓

Осадок выпадает при потирании стеклянной палочкой внутренней стенки пробирки и охлаждение пробирки под струей холодной воды.

2. Кобальтинитрит натрия образует с растворами солей калия желтый осадок - кобальтинитрит калия:

2KCl + Na 3 = K 2 Na↓ + 2 NaCl

2K + + Na + + 3- = K 2 Na↓

Реакция на ион NH

1. Едкие щелочи KOH и NaOH при нагревании вытесняют из растворов солей аммония аммиак:

NH 4 Cl +KOH = KCl + NH 3 ­ + H 2 O

NH + OH - = NH 3 ­ + H 2 O

Выделяющийся аммиак можно обнаружить по запаху или по влажной индикаторной ленте (щелочная реакция).

2. Реактив Неслера (щелочной раствор комплексной соли K 2 ) образует с раствором соли аммония осадок оранжево-бурого цвета:

NH 4 Cl + 2K 2 +2KOH = J↓ +5KJ +KCl 2H 2 O

NH + 2 2- + 2OH - = NH 2 Hg 2 J 3 ¯+ 5J - + 2H 2 O

В присутствии очень малых количеств раствор окрашивается или в желтый или в бурый цвет.

Реакция на ион Mg 2+

Гидрофосфат натрия образует с солями магния в присутствие NH 4 OH и NH 4 Cl белый кристаллический осадок.

Поместите в пробирку по 2-3 капли растворов MgCl 2 и NH 4 Cl, прибавьте к полученной смеси 2-3 капли раствора Na 2 HPO 4 . Тщательно перемешайте содержимое пробирки стеклянной палочкой и затем добавьте к раствору NH 4 OH:

MgCl 2 + NH 4 Cl + NH 4 OH + Na 2 HPO 4 = MgNH 4 PO 4 ↓ + 2NaCl + NH 4 Cl + H 2 O

Mg 2+ + HPO +NH 4 OH = MgNH 4 PO 4 ↓ + H 2 O

Реакция на ион Ba 2+

1. Дихромат–ион образует с ионами бария осадок желтого цвета (хромат бария):

2BaCl 2 + K 2 Cr 2 O 7 + H 2 O = 2BaCrO 4 ↓ + 2KCl + 2HCl

2Ba 2+ + Cr 2 O + H 2 O = 2BaCrO 4 ↓+ 2H + .

2. Сульфат – ион образует с ионами бария осадок белого цвета (сульфат бария), не растворимый в кислотах:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba 2+ + SO = BaSO 4 ↓

3. Оксалат – ион образует с ионами бария осадок белого цвета (оксалат бария):

BaCl 2 + (NH 4)C 2 O 4 = NH 4 Cl + BaC 2 O 4 ↓

Ba 2+ + C 2 O = BaC 2 O 4 ↓

Реакция на ион Ca 2+

Оксалат-ион образует с ионами кальция белый кристаллический осадок:

CaCl 2 + (NH 4) 2 C 2 O 4 = CaC 2 O 4 ↓ + 2NH 4 Cl

Ca 2+ + C 2 O = CaC 2 O 4 ¯

Проведению реакции могут мешать ионы бария.

Реакция на ион Fe 2+

Растворы двухвалентного железа окрашены в бледно-зеленный цвет.

Гексацианоферрат (III) калия с двухвалентным железом образует синий осадок, называемый турнбулевой синью:

3FeCl 2 + 2K 3 = Fe 3 2 ↓ + 6KCl

3Fe 2+ + 2 3- = Fe 3 2 ↓

Реакция на ион Fe 3+

Растворы трехвалентного железа имеют желтую или красно-бурую окраску.

1. Ионы трехвалентного железа с роданид-ионом образуют соединение, окрашивающее раствор в кроваво-красный цвет:

FeCl 3 + 3NH 4 CNS = Fe (CNS) 3 + 3NH 4 Cl

Fe 3+ + 3CNS - = Fe (CNS) 3

Fe 3+ + 6CNS - = 3-

2. Гексацианоферрат (II) калия с трехвалентным железом образует темно-синий осадок, называемый берлинской лазурью:

4FeCl 3 + 3K 4 = Fe 4 3 ↓ + 12KCl

4Fe 3+ + 3 4- = Fe 4 3 ↓

3. Ионы трехвалентного железа со фторидом натрия в растворе образуют бесцветное комплексное соединение:

FeCl 3 + 6NaF =Na 3 + 3NaCl

Fe 3+ + 6NaF = 3- + 6Na +

Реакция на ион Mn 2+

Концентрированные растворы солей марганца имеют бледно-розовый цвет, разбавленные растворы – бесцветны.

Ионы двухвалентного марганца в кислой среде окисляются (в данном случае висмутатом натрия) до перманганат–ионов красно-фиолетового цвета:

2Mn(NO 3) 2 + 5NaBiO 3 + 14HNO 3 = 2NaMnO 4 + 5Bi(NO 3) 3 + 3NaNO 3 +7H 2 O

2Mn 2+ +5BiO + 14H + = 2MnO + 5Bi 3+ +7H 2 O

Реакция на ион Cr 3+

Растворы солей хрома имеют зеленую или фиолетовую окраску.

Ионы трехвалентного хрома окисляются перекисью водорода в щелочной среде до хромат – ионов.

Поместить в пробирку 2-3 капли соли хрома (III), прилить раствор щелочи до растворения осадка. К полученному раствору хромита (изумрудно – зеленого цвета) прилить 2-3 капли перекиси водорода и осторожно нагреть пробирку. Зеленая окраска раствора перейдет в желтую:

CrCl 3 + 4NaOH = NaCrO 2 + 3NaCl + 2H 2 O

Cr 3+ + 4OH - = CrO +2H 2 O

2NaCrO 2 + 3H 2 O 2 + 2NaOH = 2Na 2 CrO 4 + 4H 2 O

2CrO + 3H 2 O 2 + 2OH - = 2CrO + 4H 2 O

Реакция на ион Co 2+

Разбавленные растворы солей кобальта имеют розовую окраску. Роданид-ион с ионами кобальта образуют комплексную соль синего цвета.

Поместите в пробирку 2-3 капли раствора кобальта (II), насыпьте немного сухой соли роданида аммония и прилейте 5-6 капель амилового или изоамилового спирта. Смесь перемешайте. Наблюдайте расслоение жидкостей и окрашивание верхнего слоя в голубой или синий цвет.

CoCl 2 + 4NH 4 CNS = (NH 4) 2 + 2NH 4 Cl

Co 2+ + 4CNS - = 2-

Этой реакции мешают ионы железы (III), которые образуют с роданидом соединение кроваво – красного цвета. Поэтому ионы железа (III) предварительно связывают в бесцветный комплекс фторидом натрия или фторидом аммония.

Реакция на ион Ni 2+

Растворы солей никеля имеют зеленую окраску.

Ионы никеля в аммиачной среде образуют с диметилглиоксимом осадок комплексной соли ало-красного цвета.

Этой реакции мешают ионы трехвалентного и двухвалентного железа:

Реакция на ион Zn 2+

Растворы солей цинка бесцветны.

С гексацианоферратом (II) калия ионы цинка образуют аморфный осадок салатного цвета:

3ZnCl 2 +2K 4 2 = K 2 Zn 3 2 ↓ + 6KCl

2K + + 3Zn 2+ + 2 4- = K 2 Zn 3 2 ↓

Реакция на ион Al 3+

Растворы солей алюминия бесцветны.

При осторожном добавлении щелочей (по каплям) образуется осадок белого цвета в виде белых студенистых хлопьев, часто всплывающих на поверхность раствора:

AlCl 3 + 3NaOH = Al (OH) 3 ↓ + 3NaCl

Al 3+ + 3OH - = Al(OH) 3 ↓

Гидроксид алюминия обладает амфотерными свойствами: при действии на Al (OH) 3 раствором кислоты или щелочи происходит растворение осадка:

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

Al(OH) 3 + 3H + = Al 3+ + 3H 2 O

Al(OH) 3 + 3NaOH = Na 3

Al(OH) 3 + 3OH - = 3-

Реакция на ион Ag +

1. Хлорид – ион осаждает ионы серебра из раствора в виде белого творожистого осадка:

AgNO 3 + HCl = AgCl↓ + HNO 3

Ag + + Cl - = AgCl↓

Хлорид серебра нерастворим в азотной кислоте, но растворим в гидроксиде аммония:

AgCl + 2NH 4 OH = Cl + 2H 2 O

Если на полученный раствор Cl подействовать раствором азотной кислоты, то AgCl снова выпадает в виде творожистого белого осадка:

Cl + 2HNO 3 = AgCl↓ + 2NH 4 NO 3

2. Иодид – ион с ионами серебра образует осадок желтого цвета:

AgNO 3 + KJ = AgJ↓ + KNO 3

Ag + + J - = AgJ↓

Реакция на ион Pb 2+

1. Хлорид – ион осаждает ионы свинца в виде белого творожистого осадка:

Pb(NO 3) 2 + 2HCl = PbCl 2 ↓ + 2HNO 3

Pb 2+ + 2Cl - = PbCl 2 ↓

Хлорид свинца нерастворим в гидроксиде аммония:

PbCl 2 + NH 4 OH = реакция не идет.

2. Иодид – ион осаждает ионы свинца в виде осадка желтого цвета:

Pb (NO 3) 2 + 2KJ = PbJ 2 ↓ + 2KNO 3

Pb 2+ + 2J - = PbJ 2 ↓

Часть осадка растворите в 5-6 каплях уксусной кислоты при нагревании, а затем осторожно охладите под струей холодной воды. Хлорид свинца из раствора выпадает в виде золотистых хлопьев.

Реакция на ион Cu 2+

1. Гидроксид аммония, добавленный в избытке к солям меди, образует растворимое комплексное соединение василькового цвета:

CuSO 4 + 4NH 4 OH = SO 4 + 4H 2 O

Cu 2+ + 4NH 4 OH = 2+ + 4H 2 O

2. Гексацианоферрат калия осаждает ион меди (II) из раствора в виде осадка красно-коричневого цвета:

2CuSO 4 + K 4 = Cu 2 ↓ + 2K 2 SO 4

2Cu 2+ + 4- = Cu 2 ↓

Реакция на ион Cd 2 +

Сульфид – ион в слабокислой среде осаждает ионы кадмия из раствора в виде осадка желтого цвета:

CdCl 2 + Na 2 S = CdS↓ + 2NaCl

Cd 2+ + S 2- = CdS↓

Контрольные вопросы

1. Приведите примеры катионов и анионов, которые могут быть обнаружены с помощью окислительно-восстановительных реакций.

2. Какие ионы образуют окрашенные комплексные соединения: Cu 2+ ; Cu + ; Fe 2+ ; Fe 3+ ; Co 3+ ; Zn 2+ ; Ag + ?

3. Присутствие каких ионов может быть обнаружено по образованию летучих веществ: SO ; SO ; CO ; PO ; Na + ; NH ?

4. Как доказать наличие ионов Сu 2+ и Ag + в одном растворе?


Лабораторная работа № 3 (4 ч.)

Тема: Карбонаты. Жесткость воды (постоянная и временная).

Цель: ознакомиться со способами устранения временной и постоянной жесткости воды.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Присутствие в воде ионов Са 2+ и Мg 2+ обуславливает так называемую жёсткость воды. Жёсткая вода вызывает повышенный расход мыла, по­скольку при взаимодействии солей кальция и магния с мылом образуются нерастворимые осадки:

2С 17 Нз 5 СООNа+ Са(НСО 3) 2 = 2NаНСОз + (С 17 Н 35 СОО) 2 Са¯

На стенках паровых котлов жёсткая вода образует накипь, обладаю­щую плохой теплопроводностью. Кроме того, накипь способствует корро­зии стенок котлов. В жёсткой воде плохо разваривается мясо, овощи, пло­хо заваривается чай. Очень жёсткая вода не пригодна для питья. Условная классификация воды по уровню жёсткости приведена в табл. 3.

Чтобы определить катион серебра, нужно провести реакцию с каким-нибудь хлоридом. Взаимодействие Ag(+) и Cl(-) дает в итоге белый осадок AgCl↓. Катионы бария Ba2+ обнаруживаются в реакции с сульфатами: Ba(2+)+SO4(2-)=BaSO4↓ (белый осадок). Столь же верно и обратное: чтобы обнаружить в растворе хлорид-ионы или сульфат-ионы, нужно провести реакцию, соответственно, с солями серебра и бария.


Для определения катионов Fe(2+) используют гексацианоферрат (III) калия K3, а точнее, комплексный ион (3-). Образующийся темно-синий осадок Fe32 называется «турнбуллевой синью». Для выявления катионов железа (III) берут уже гексацианоферрат (II) калия K4, дающий при взаимодействии с Fe(3+) темно-синий осадок Fe43 – «берлинскую лазурь». Обнаружить Fe(3+) можно также в реакции с роданидом аммония NH4CNS. В результате образуется малодиссоциирующий роданид железа (III) – Fe(CNS)3 – и раствор приобретает кроваво-красный цвет.


Избыток катионов водорода H+ создает кислую среду, в которой соответственно меняются окраски индикаторов: оранжевый и фиолетовый лакмус становятся красными. В избытке же гидроксид-ионов OH- (щелочной среде) лакмус становится синим, метилоранж – желтым, а бесцветный в нейтральной и кислой средах фенолфталеин приобретает малиновое окрашивание.


Чтобы понять, есть ли в растворе катион аммония NH4+, нужно добавить щелочь. При обратимом взаимодействии с гидроксид-ионами NH4+ дает аммиак NH3 и воду. Аммиак имеет характерный запах, а влажная лакмусовая бумажка в таком растворе посинеет.


В качественной реакции на аммиак используется HCl. В процессе образования из аммиака и хлороводорода хлорида аммония HN4Cl можно наблюдать белый дым.


Карбонат- и гидрокарбонат-ионы CO3(2-) и HCO3(-) можно обнаружить при добавлении кислоты. В результате взаимодействия этих ионов с катионами водорода выделяется углекислый газ и образуется вода. При пропускании полученного газа через известковую воду Ca(OH) , поскольку образуется нерастворимое соединение – карбонат кальция CaCO3↓. При дальнейшем пропускании углекислого газа образуется кислая соль – растворимый уже Ca(HCO3)2.


Реагент для обнаружения сульфид-ионов S(2-) – растворимые соли свинца, дающие в реакции с S(2-) черный осадок PbS↓.

Обнаружение ионов при помощи горелки

Соли некоторых металлов при внесении в пламя горелки окрашивают его. Это свойство используется в качественном анализе для обнаружения катионов этих элементов. Так, Ca(2+) окрашивает пламя в кирпично-красный цвет, Ba(2+) - в желто-зеленый. Горение солей калия сопровождается фиолетовым пламенем, лития – ярко-красным, натрия – желтым, стронция – карминово-красным.

Качественные реакции в органической химии

Соединения с двойными и тройными связями (алкены, алкадиены, алкины) обесцвечивают красно-бурую бромную воду Br2 и розовый раствор перманганата калия KMnO4. Вещества с двумя или более гидроксогруппами -OH (многоатомные спирты, моносахариды, дисахариды) растворяют в щелочной среде свежеприготовленный голубой осадок Cu(OH)2, образуя раствор ярко-синего цвета. С гидроксидом меди (II) реагируют также альдегиды, альдозы и восстанавливающие дисахариды (альдегидная группа), но здесь выпадает уже осадок Cu2O↓ кирпично-красного цвета.


Фенол в растворе хлорида железа (III) образует комплексное соединение с FeCl3 и дает фиолетовое окрашивание. Вещества, содержащие альдегидную группу, дают реакции «серебряного зеркала» с аммиачным раствором оксида серебра. Раствор йода при внесении в него крахмала становится фиолетовым, а пептидные связи белков обнаруживаются в реакции с насыщенным раствором сульфата меди и концентрированным едким натром.

Источники:

  • § Качественные реакции в химии

Кислота – это сложное вещество, которое может быть как органическим, так и неорганическим. Общим является то, что они имеют в своем составе атомы водорода и кислотный остаток. Именно последний придает специфические свойства каждой кислоте, а также по нему проводится качественный анализ. Любая растворимая в воде кислота диссоциирует (распадается) на частицы – положительно заряженные ионы водорода, которые и обуславливают кислые свойства, и на отрицательно заряженные ионы кислотного остатка.

Вам понадобится

  • - штатив;
  • - пробирки;
  • - растворы индикаторов;
  • - нитрат серебра;
  • - растворы кислот;
  • - нитрат бария;
  • - медные стружки.

Инструкция

Чтобы определить, что в растворе находится именно , воспользуйтесь индикатором (бумажным или в растворе). Добавьте в емкость к исследуемому раствору лакмус, который в кислой среде становится красным. Для достоверности прилейте другой индикатор – метиловый оранжевый, который изменит окраску на розовую или розово- . Третий индикатор, а именно фенолфталеин в кислой среде не меняется, оставаясь при этом прозрачным. Эти опыты доказывают наличие кислоты, но не специфичность каждой из них.

Для того чтобы определить конкретно, находится в склянке, нужно провести качественную реакцию на остаток. Серная кислота имеет в своем составе сульфат-ион, реагентом на который является ион бария. Добавьте к вещество, содержащее этот ион, например нитрат бария. Моментально выпадет осадок белого цвета, представляющий собой сульфат бария.

Лишь небольшая часть неорганических соединений может быть обнаружена с помощью специфических реагентов и реакций. Значительно чаще в аналитической практике проводят выявление определенных элементов в виде катионов или анионов.

Многие качественные реакции известны вам из школьного курса химии, с некоторыми вы, возможно, познакомитесь вновь.

Аммиак NH 3 – бесцветный газ, при комнатной температуре под избыточным давлением сжижается; жидкий аммиак – бесцветный, твердый аммиак – белый.

Определяется аммиак по характерному запаху. Бумажка, смоченная раствором нитрата ртути (I) Hg 2 (NO 3) 2 , при действии аммиака чернеет вследствие образования металлической ртути:

4NH 3 + H 2 O + 2Hg 2 (NO 3) 2 = (Hg 2 N)NO 3 ·H 2 O↓ + 2Hg↓ + 3NH 4 NO 3

Арсин AsH 3 – бесцветный газ, иногда имеет чесночный запах, обусловленный продуктами окисления арсина на воздухе. При пропускании арсина через нагретую до 300-350°С стеклянную трубку, наполненную водородом, на ее стенках осаждается мышьяк в виде черно-бурого зеркала, которое легко растворяется в щелочном растворе гипохлорита натрия:

2AsH 3 = 2As + 3H 2 ,

2As + 6NaOH + 5NaClO = 2Na 3 AsO 4 + 5NaCl + 3H 2 O.

Бром Br 2 – темно-красная тяжелая жидкость, легко превращается в красно-коричневый газ. Бром определяют цветными реакциями с органическими веществами. Бром окрашивает слой органического растворителя (например, тетрахлорметана или бензола) в желтый цвет, фуксин – в красно-фиолетовый.

Кроме того, бром определяется по реакции с флюоресцеином

В результате замещения атомов водорода в флюоресцеине атомами брома получаются красители, один из которых носит название эозин .

Эозин или тетрабромфлюоресцеин C 20 H 8 Br 4 O 5 – кристаллизуется из спиртового раствора с одной молекулой кристаллизационного спирта. При 100°С возгоняется. Калийная соль тетрабромфлюоресцеина растворяется в концентрированном спиртовом растворе гидроксида калия и дает раствор синего цвета. При кипячении эозина с серной кислотой получают димерное соединение С 40 Н 13 Вr 7 О 10 , которое из ацетона кристаллизуется в иглах сине-стального цвета и имеет характер кислоты. Четырехбромистое производное так же, как низшие степени бромирования флюоресцеина, представляют красные краски с желтым (при меньшем количестве брома) или синим оттенком. Калийные и натриевые соли тетрабромфлюоресцеина и низших степеней бромирования флюоресцеина в торговле встречаются под названием «растворимых в воде эозинов». Эозин служит для окрашивания без протрав шелка и шерсти (в слабо кислой среде), также употребляется в фотографии для получения специфических бумаг, поглощающих зеленые и фиолетовые лучи.


Вода H 2 O – бесцветная жидкость, в толстом слое – голубовато-зеленая, летучая; твердая вода (лед) легко возгоняется. Вода обнаруживают по образованию окрашенных кристаллогидратов со многими веществами, например:

CuSO 4 + 5H 2 O = SO 4 ·H 2 O (кристаллогидрат голубого цвета).

Количественно вода определяется по методу К. Фишера. Со времени открытия в 1935 году метод титрования по Карлу Фишеру получил распространение по всему миру. По этому методу содержание воды в газах, жидкостях и твердых веществах может быть определено легко и с высокой степенью точности, вне зависимости от типа образца, его агрегатного состояния, или присутствия летучих компонентов. Титрование по Карлу Фишеру имеет широкий спектр применения и используется в различных областях, например, при определении воды в пищевых, химических, фармацевтических продуктах, косметике и минеральных маслах.

Реактивом метода Фишера является раствор йода и оксида серы (IV) в пиридине (Py) и метаноле. Пиридин необходим для связывания кислых продуктов реакции и создания оптимального рН в интервале 5-8.

В основе титрования лежат следующие реакции:

PySO 4 + CH 3 OH = PyH + ·CH 3 SO

PyH + ·CH 3 SO + PyI 2 + H 2 O + Py = 2(PyH + ·I –) + PyH + ·CH 3 SO .

Наличие воды определяется по исчезновению желтой окраски йода.

Йод I 2 –фиолетово-черное с металлическим блеском, летучее вещество. Определяется цветными реакциями:

– с крахмалом образует соединение включения, окрашенное в фиолетовый цвет;

– слой органического растворителя (хлороформа или тетрахлорметана) окрашивается в розово-фиолетовый цвет.

Качественной реакцией на йод считается взаимодействие с тиосульфатом натрия, сопровождающееся обесцвечиванием раствора йода:

I 2 + 2Na 2 S 2 O 3 = 2NaI + Na 2 S 4 O 6 .

Кислород О 2 – бесцветный газ, в жидком состоянии – светло-голубой, в твердом – синий. Для доказательства присутствия кислорода используют его способность поддерживать горение, а также многочисленные окислительные реакции. Например, окисление бесцветного аммиачного комплекса меди (I) до ярко-окрашенного соединения меди (II).

Озон О 3 – светло-синий газ с запахом свежести, в жидком состоянии – темно-голубой, в твердом – темно-фиолетовый (до черного). Если в воздух, содержащий озон, внести бумажку, смоченную растворами иодида калия и крахмала, то бумажка синеет:

O 3 + 2KI + H 2 O = I 2 + 2KOH + O 2 .

Такой способ обнаружения озона называется йодометрией.

Оксид углерода (IV), углекислый газ СО 2 – бесцветный газ, при сжатии и охлаждении легко переходит в жидкое и твердое состояние. Твердый СО 2 («сухой лед») при комнатной температуре возгоняется. Углекислый газ в процессах, где он образуется, доказывают помутнением известковой или баритовой воды (насыщенные растворы Са(ОН) 2 или Ва(ОН) 2 соответственно):

Са(ОН) 2 + СО 2 = СаСО 3 ↓ + Н 2 О, Ва(ОН) 2 + СО 2 = ВаСО 3 ↓ + Н 2 О.

Большинство веществ в атмосфере углекислого газа не горит, однако возможна следующая реакция:

CO 2 + 2Mg = 2MgO + C,

т. е. оксид углерода (IV) поддерживает горение магния, в результате реакции образуется белый «пепел» оксида магния и черная сажа.

Пероксид водорода Н 2 О 2 – бесцветная вязкая жидкость, в толстом слое – светло-голубая. Разлагается на свету с выделением кислорода. Обнаруживают пероксид водорода следующими реакциями:

– появление желтой окраски при взаимодействии с раствором иодида калия:

Н 2 О 2 + 2KI = 2KОН + I 2 ,

– выделение темного осадка серебра из аммиачного раствора оксида серебра:

H 2 O 2 + Ag 2 O = 2Ag + O 2 + H 2 O;

– изменение цвета при взаимодействии с осадком сульфида свинца с черного на белый:

4H 2 O 2 + PbS = PbSO 4 + 4H 2 O.

Ртуть Hg – серебристо-белый металл, жидкий при комнатной температуре; в твердом состоянии ковкий. Легко испаряется. Пары ртути (более опасные для человека, чем сам металл) определяются с использованием химических индикаторов (KI, I 2 , CuI, SeS, Se, AuBr 3 , AuCl 3 и другие), например:

3Hg + 2I 2 = HgI 2 + Hg 2 I 2 ↓,

Сероводород H 2 S – бесцветный газ, имеющий запах тухлых яиц. Обнаруживают сероводород следующими реакциями:

– почернение бумажки, смоченной раствором соли свинца:

H 2 S + Pb(NO 3) 2 = PbS↓ + 2HNO 3 ;

– при пропускании сероводорода через раствор йода (йодную воду) происходит обесцвечивание раствора и образование слабой мути:

H 2 S + I 2 = 2HI + S↓.

Фосфин РН 3 – бесцветный газ с резким запахом гнилой рыбы. В смеси с кислородом легко взрывается.

Хлор Cl 2 – желто-зеленый газ с резким запахом. Обнаруживают хлор по желтому окрашиванию флюоресцеина в щелочной среде, а также по йод-крахмальной реакции:

Cl 2 + 2KI = 2KCl + I 2 ,

т. е., в атмосфере хлора бумажка, смоченная растворами иодида калия и крахмала, синеет.

1. Качественные реакции на катионы.
1.1.1 Качественные реакции на катионы щелочных металлов (Li + , Na + , K + , Rb + , Cs +).
Катионы щелочных металлов возможно провести только с сухими солями, т.к. практически все соли щелочных металлов растворимы. Обнаружить их можно при внесении небольшого количества соли в пламя горелки. Тот или иной катион окрашивает пламя в соответствующий цвет:
Li + - темно-розовый.
Na + - желтый.
K + - фиолетовый.
Rb + - красный.
Cs + - голубой.
Катионы так же можно обнаружить и с помощью химических реакций. При сливании раствора соли лития с фосфатами образуется нерастворимый в воде, но растворимый в конц. азотной кислоте, фосфат лития:
3Li + + PO4 3- = Li 3 PO 4 ↓
Li 3 PO 4 + 3HNO 3 = 3LiNO 3 + H 3 PO 4

Катион K + можно вывести гидротартрат-анионом HC 4 H 4 O 6 - - анионом винной кислоты:
K + + HC 4 H 4 O 6 - = KHC 4 H 4 O 6 ↓

Катионы K + и Rb + можно выявить добавлением к растворам их солей кремнефтористой кислоты H 2 или ее солей - гексафторсиликатов:
2Me + + 2- = Me 2 ↓ (Me = K, Rb)

Они же и Cs + осаждаются из растворов при добавлении перхлорат-анионов:
Me + + ClO 4 - = MeClO 4 ↓ (Me = K, Rb, Cs).

1.1.2 Качественные реакции на катионы щелочно-земельных металлов (Ca 2+ , Sr 2+ , Ba 2+ , Ra 2+).
Катионы щелочно-земельных металлов можно выявить двумя способами: в растворе и по окраске пламени. Кстати, к щелочно-земельным относятся кальций, стронций, барий и радий. Бериллий и магний нельзя отнести к этой группе, как это любят делать на просторах Интернета.
Окраска пламени:
Ca 2+ - кирпично-красный.
Sr 2+ - карминово-красный.
Ba 2+ - желтовато-зеленый.
Ra 2+ - темно-красный.

Реакции в растворах. Катионы рассматриваемых металлов имеют общую особенность: их карбонаты и сульфаты нерастворимы. Катион Ca 2+ предпочитают выявлять карбонат-анионом CO 3 2- :
Ca 2+ + CO 3 2- = CaCO 3 ↓
Который легко растворяется в азотной кислоте с выделением углекислого газа:
2H + + CO 3 2- = H 2 O + CO 2
Катионы Ba 2+ , Sr 2+ и Ra 2+ предпочитают выявлять сульфат-анионом с образованием сульфатов, нерастворимых в кислотах:
Sr 2+ + SO 4 2- = SrSO 4 ↓
Ba 2+ + SO 4 2- = BaSO 4 ↓
Ra 2+ + SO 4 2- = RaSO 4 ↓

1.1.3. Качественные реакции на катионы свинца (II) Pb 2+ , серебра (I) Ag + , ртути (I) Hg 2 + , ртути (II) Hg 2+ . Рассмотрим их на примере свинца и серебра.
Эта группу катионов объединяет одна общая особенность: они образуют нерастворимые хлориды. Но катионы свинца и серебра можно выявить и другими галогенидами.

Качественная реакция на катион свинца - образование хлорида свинца (осадок белого цвета), либо образование иодида свинца (осадок ярко желтого цвета):
Pb 2+ + 2I - = PbI 2 ↓

Качественная реакция на катион серебра - образование белого творожистого осадка хлорида серебра, желтовато-белого осадка бромида серебра, образование желтого осадка иодида серебра:
Ag + + Cl - = AgCl↓
Ag + + Br - = AgBr↓
Ag + + I - = AgI↓
Как видно из выше изложенных реакций, галогениды серебра (кроме фторида) нерастворимы, а бромид и иодид даже имеют окраску. Но отличительная черта их не в этом. Данные соединения разлагаются под действием света на серебро и соответствующий галоген, что также помогает их идентифицировать. Поэтому часто емкости с этими солями испускают запахи. Также при добавлении к данным осадкам тиосульфата натрия происходит растворение:
AgHal + 2Na 2 S 2 O 3 = Na 3 + NaHal, (Hal = Cl, Br, I).
То же самое произойдет при добавлении жидкого аммиака или его конц. раствора. Растворяется только AgCl. AgBr и AgI в аммиаке практически нерастворимы :
AgCl + 2NH 3 = Cl

Существует также еще одна качественная реакция на катион серебра - образование оксида серебра черного цвета при добавлении щелочи:
2Ag + + 2OH - = Ag 2 O↓ + H 2 O
Это связано с тем, что гидроксид серебра при нормальных условиях не существует и сразу же распадается на оксид и воду.

1.1.4. Качественная реакция на катионы алюминия Al 3+ , хрома (III) Cr 3+ , цинка Zn 2+ , олова (II) Sn 2+ . Данные катионы объединены образованием нерастворимых оснований, легко переводимых в комплексные соединения. Групповой реагент - щелочь.
Al 3+ + 3OH - = Al(OH) 3 ↓ + 3OH - = 3-
Cr 3+ + 3OH - = Cr(OH) 3 ↓ + 3OH - = 3-
Zn 2+ + 2OH - = Zn(OH) 2 ↓ + 2OH- = 2-
Sn 2+ + 2OH- = Sn(OH) 2 ↓ + 2OH - = 2-
Не стоит забывать, что основания катионов Al 3+ , Cr 3+ и Sn 2+ не переводятся в комплексное соединение гидратом аммиака. Этим пользуются, чтобы полностью осадить катионы. Zn 2+ при добавлении конц. раствора аммиака сначала образует Zn(OH) 2 , а при избытке аммиак способствует растворению осадка:
Zn(OH) 2 + 4NH 3 = (OH) 2

1.1.5. Качественная реакция на катионы железа (II) и (III) Fe 2+ , Fe 3+ . Данные катионы также образуют нерастворимые основания. Иону Fe 2+ отвечает гидроксид железа (II) Fe(OH) 2 - осадок белого цвета. На воздухе сразу покрывается зеленым налетом, поэтому чистый Fe(OH) 2 получают в атмосфере инертых газов либо азота N 2 .
Катиону Fe 3+ отвечает метагидроксид железа (III) FeO(OH) бурого цвета. Примечание: соединения состава Fe(OH) 3 неизвестно (не получено). Но все же большинство придерживаются записи Fe(OH) 3 .
Качественная реакция на Fe 2+ :
Fe 2+ + 2OH - = Fe(OH) 2 ↓
Fe(OH) 2 будучи соединением двухвалентного железа на воздухе неустойчиво и постепенно переходит в гидроксид железа (III):
4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Качественная реакция на Fe 3+ :
Fe 3+ + 3OH - = Fe(OH) 3 ↓
Еще одной качественной реакцией на Fe 3+ является взаимодействие с роданид-анионом SCN - , при этом образуется роданид железа (III) Fe(SCN) 3 , окрашивающий раствор в темно-красный цвет (эффект «крови»):
Fe 3+ + 3SCN - = Fe(SCN) 3
Роданид железа (III) легко «разрушается» при добавлении фторидов щелочных металлов:
6NaF + Fe(SCN) 3 = Na 3 + 3NaSCN
Раствор становится бесцветным.
Очень чувствительная реакция на Fe 3+ , помогает обнаружить даже очень незначительные следы данного катиона.

1.1.6. Качественная реакция на катион марганца (II) Mn 2+ . Данная реакция основана на жестком окислении марганца в кислой среде с изменением степени окисления с +2 до +7. При этом раствор окрашивается в темно-фиолетовый цвет из-за появления перманганат-аниона. Рассмотрим на примере нитрата марганца:
2Mn(NO 3) 2 + 5PbO 2 + 6HNO 3 = 2HMnO 4 + 5Pb(NO 3) 2 + 2H 2 O

1.1.7. Качественная реакция на катионы меди (II) Cu 2+ , кобальта (II) Co 2+ и никеля (II) Ni 2+ . Особенность этих катионов в образовании с молекулами аммиака комплексных солей - аммиакатов:
Cu 2+ + 4NH 3 = 2+
Аммиакаты окрашивают растворы в яркие цвета. К примеру, аммиакат меди окрашивает раствор в ярко-синий цвет.

1.1.8. Качественные реакции на катион аммония NH 4 + . Взаимодействие солей аммония со щелочами при кипячении:
NH 4 + + OH - =t= NH 3 + H 2 O
При поднесении влажная лакмусовая бумажка окрасится в синий цвет.

1.1.9. Качественная реакция на катион церия (III) Ce 3+ . Взаимодействие солей церия (III) с щелочным раствором пероксида водорода:
Ce 3+ + 3OH - = Ce(OH) 3 ↓
2Ce(OH) 3 + 3H 2 O 2 = 2Ce(OH) 3 (OOH)↓ + 2H 2 O
Пероксогидроксид церия (IV) имеет красно-бурый цвет.

1.2.1. Качественная реакция на катион висмута (III) Bi 3+ . Образование ярко-желтого раствора тетраиодовисмутата (III) калия K при действии на раствор, содержащий Bi 3+ , избытком KI:
Bi(NO 3) 3 + 4KI = K + 3KNO 3
Связано это с тем, что сначала образуется нерастворимый BiI 3 , который затем связывается с помощью I - в комплекс.
На этом я закончу описание выявления катионов. Теперь рассмотрим качественные реакции на некоторые анионы.

























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели : систематизировать представление учащихся о качественных реакциях на некоторые катионы и анионы, органические вещества. Подготовка к ЕГЭ.

Задачи урока:

  • Обучающие : систематизировать, обобщить и углубить знания учащихся о качественных реакциях.
  • Воспитывающие : доказать ведущую роль теории в познании практики; доказать материальность изучаемых процессов; воспитание самостоятельности, сотрудничества, способности к взаимовыручке, культуры речи, трудолюбия, усидчивости.
  • Развивающие : развитие способности к анализу; умения использовать изученный материал для познания нового; памяти, внимания, логического мышления.

Тип урока: урок-лекция с элементами комплексного применения знаний, умений, навыков.

Ход урока

Вступительное слово учителя.

Отдельные методы и приемы химического анализа были известны ещё в глубокой древности. Уже тогда могли проводить анализы лекарственных препаратов, металлических руд.

Английский ученый Роберт Бойль (1627 - 1691)считается основоположником качественного анализа.

Основной задачей качественного анализа является обнаружение веществ, находящихся в интересующем нас объекте (биологические материалы, лекарственные препараты, продукты питания, объекты окружающей среды). В школьном курсе рассматривается качественный анализ неорганических веществ (являющихся электролитами, т.е. по сути качественный анализ ионов) и некоторых органических соединений.

Науку о методах определения качественного и количественного состава веществ или их смесей по интенсивности аналитического сигнала называют аналитической химией. Аналитическая химия разрабатывает теоретические основы методов исследования химического состава веществ и их практического применения. Задача качественного анализа - обнаружение компонентов (или ионов), содержащихся в данном веществе.

Исследования вещества всегда начинаются с его качественного анализа, т. е. из определения того из каких компонентов (или ионов) состоит это вещество.

Теоретические основы химического анализа составляют следующие законы и теоретические положения: периодический закон Д.И. Менделеева; закон действующих масс; теория электролитической диссоциации; химическое равновесие в гетерогенных системах; комплексообразование; амфотерность гидроксидов; автопротолиз (водородный и гидроксидный показатели); ОВР.

Химические методы основаны на превращениях, протекающих в растворах с образованием осадков, окрашенных соединений или газообразных веществ. Химические процессы, используемые в целях анализа, называют аналитическими реакциями. Аналитическими являются реакции, которые сопровождаются каким-нибудь внешним эффектом, позволяющим установить, что химический процесс связан с выпадение или растворением осадка, изменением окраски анализируемого раствора, выделением газообразных веществ. Требования к аналитическим реакциям и их особенности можно свести к следующим положениям:

выполнение анализа “сухим” или “мокрым” способом (сухой способ - это пирохимические методы, от греч. “пир” - огонь), сюда следует отнести пробы на окрашивание пламени при сгорании исследуемого вещества на петле платиновой (или нихромовой) проволочки с получением в результате окрашенного в характерный цвет пламени; метод растирания твердого анализируемого вещества с твердым реактивом, например, при растирании смеси соли аммония с Са(ОН) 2 выделяется аммиак. Анализ сухим способом применяется для экспресс-анализов или в полевых условиях для качественного и полуколичественного исследования минералов и руд;

для проведения мокрого анализа исследуемое вещество должно быть переведено в раствор и в дальнейшем реакции идут как реакции обнаружения ионов.

Аналитическая реакция должна протекать быстро и полно при соблюдении определенных условий: температуры, реакции среды и концентрации обнаруживаемого иона. При выборе реакции обнаружения ионов руководствуются законом действующих масс и представлениями о химическом равновесии в растворах. При этом выделяются следующие характеристики аналитических реакций: селективность или избирательность; специфичность; чувствительность. Последняя характеристика связана с концентрацией обнаруживаемого иона в растворе и если реакция удается при низкой концентрации иона, то говорят о высокочувствительной реакции. Например, если вещество малорастворимое в воде и осадок выпадает при его низкой концентрации, то это высокочувствительная реакция, если вещество хорошо растворимо и выпадает в осадок при высокой концентрации иона, то реакция считается малочувствительной. Понятие чувствительности относится ко всем аналитическим реакциям, каким бы внешним эффектом они не сопровождались.

Рассмотрим наиболее характерные качественные реакции школьного курса.

В конце лекции можно предложить ученикам контрольной тестирование с использованием вопросов из тестов ЕГЭ по данной теме

Понравилась статья? Поделитесь с друзьями!