Элементарная теория множеств. Теория множеств: основные понятия и определения. Предикаты и кванторы

    Михаил Раскин

    Современная математика в качестве своего основания использует теорию множеств. Традиционно при анализе теоретико-множественных тонкостей используется аксиоматика Цермело-Френкеля с аксиомой выбора, обозначаемая ZFC. На аксиому выбора опираются доказательства наличия базиса в любом векторном пространстве и существования неизмеримого множества в математическом анализе. К сожалению, теория множеств обязана работать и со множествами, которые не описываются достаточно подробно и конкретно, чтобы мы могли себе их представить. В курсе будет рассмотрен один пример, к чему это приводит. Оказывается, ценой ослабления аксиомы выбора можно получить теорию множеств, в которой любая ограниченная функция на отрезке интегрируема по Лебегу. То, что используется аксиома выбора, в каком-то смысле, произошло исторически. Курс основан на статье Р.М. Соловэя о построении теории множеств, в которой все множества вещественных чисел измеримы.

    Михаил Раскин

    В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома - это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.

    Иван Ященко

    При развитии теории множеств, на которой базируется вся современная математика, возникали парадоксы. Например, парадокс брадобрея, формулируемый следующим образом: «Бреет ли себя брадобрей, если он бреет тех и только тех, кто сам себя не бреет?» В брошюре рассказывается о том, как теория множеств обходится с подобными ситуациями, а также о других парадоксах, в том числе возникающих при рассмотрении аксиомы выбора. В частности, вы узнаете, как из одного апельсина сделать два. Приведены задачи, самостоятельное решение которых поможет читателю более полно разобраться в материале. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

    Парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

    Уверены ли вы, что точно представляете себе бесконечность? Харизматичный математик Джеймс запросто убедит вас в обратном.

    Александр Буфетов

    В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.

    Юрий Лебедев

    Когда у меня в руках оказалась старая картонная папка, я был уже уверен, что в ней не вырезки из газет о «царице полей» кукурузе. И совершенно не удивился тому, что моя уверенность оправдалась. В папке находились рукописи или, точнее, черновики двух статей - «Принципы семиотической термодинамики», «Отказ от исключения» - и целая пачка других, для прочтения которых потребуется еще много усилий. Ни имени автора, ни даты написания на листках не было. Вероятнее всего, папку забыл кто-то из «дикарей» прошлых лет. Не имея возможности объясниться с автором, я решил предложить вашему вниманию свой вариант расшифровки одной из этих до крайности небрежно написанных неудобочитаемым почерком статей.

    Владимир Успенский

    Если в качестве значений переменных разрешается брать только элементы носителя, язык называют элементарным языком, или языком первого порядка. Если же в качестве значений переменных разрешается брать также функции и отношения, язык называют языком второго порядка. Выразительные возможности языков первого порядка довольно ограничены. Например, на языке первого порядка можно сообщить, что носитель содержит ровно 17 элементов, но невозможно выразить его конечность. На языке второго порядка выразить конечность носителя возможно. Возникает совершенно естественное недоумение: а зачем тогда пользоваться языками первого порядка с их бедными выразительными средствами, не лучше ли пользоваться языками второго порядка?

    Михаил Раскин

    Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.

    Джордана Цепелевич

    Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств - так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные . Множества называются конечным , если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a 1 , a 2 ,a 3 , ..., a n }. Множество называется бесконечным , если оно содержит бесконечное число элементов. B={b 1 ,b 2 ,b 3 , ...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными , если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество А i множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2 n .

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а 1 , а 2 , а 3 , ..., а n , ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n 2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m 1 ,m 2 ,m 3 ,..,m n });
  • описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x 1 =1, x 2 =1, x k+2 =x k +x k+1 , k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х 1 =1,х 2 =1 и произвольное х k+1 (при к=1,2,3,...) вычисляется по формуле х k+2 =х k +х k+1 } или Х= Расширения

Основная статья: Теория комплектов

Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

Приложения

См. также

Примечания

Литература

  • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
  • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

  • Математический анализ
  • Подмножество

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ - ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    ТЕОРИЯ МНОЖЕСТВ - теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

    Теория множеств Кантора - … Википедия

    Теория множеств Цермело-Френкеля - … Википедия

Определение 1. Множеством называется совокупность некоторых объектов, объединенных в одно целое по какому ‒ либо признаку.

Объекты, из которых состоит множество, называются его элементами.

Обозначаются заглавными буквами латинского алфавита: A , B , …, X , Y , …, а их элементы обозначаются соответствующими прописными буквами: a, b , …, x, y .

Определение 1.1. Множество, не содержащее ни одного элемента, называется пустым и обозначается символом Ø.

Множество можно задать перечислением и описанием.

Пример:; .

Определение 1.2. Множеством A называется подмножеством B , если каждый элемент множества A является элементом множества B . Символически это обозначают так: AB (A содержится в B ).

Определение 1.3. Два множества A и B называются равными , если они состоят из одних и тех же элементов: (A =B ).

Операции над множествами.

Определение 1.4. Объединением или суммой множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит хотя бы одному из этих множеств.

Объединение множеств обозначают AB (или A +B ). Кратко можно записать AB = .

AB = A +B

Если BA , то A +B=A

Определение 1.5. Пересечением или произведением множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит множеству A и множеству B одновременно. Пересечение множеств обозначают AB (или A ·B ). Кратко можно записать:

AB =.

AB =A ·B

Если B A , то A · B= B

Определение 1.6. Разностью множеств A и B называется множество, каждый элемент которого является элементом множества A и не является элементом множества B . Разность множеств обозначают A \B . По определению A \B = .

A \B = A B

Множества, элементами которых являются числа, называются числовыми .

Примерами числовых множеств являются:

N = - множество натуральных чисел.

Z = - множество целых чисел.

Q = - множество рациональных чисел.

R ‒ множество действительных чисел.

Множество R содержит рациональные и иррациональные числа. Всякое рациональное число выражается или конечной десятичной дробью или бесконечной периодической дробью. Так, ;… ‒ рациональные числа.

Иррациональное число выражается бесконечной непериодической десятичной дробью. Так, = 1,41421356...; = 3,14159265.... – иррациональное число.

K – множество комплексных чисел (вида Z =a + bi )

R K

Определение 1.7. Ɛ ‒ окрестностью точки x 0 называется симметричный интервал (x 0 – Ɛ; x 0 + Ɛ), содержащий точку x 0 .

В частности, если интервал (x 0 –Ɛ; x 0 +Ɛ), то выполнятся неравенство x 0 –Ɛ<x <x 0 +Ɛ, или, что то же, │x x 0 │<Ɛ. Выполнение последнего означает попадание точки x в Ɛ – окрестность точки x 0 .

Пример 1:

(2 – 0,1; 2 + 0,1) или (1,9; 2,1) – Ɛ– окрестность.

x – 2│< 0,1

–0,1<x – 2<0,1

2 –0,1<x < 2 + 0,1

1,9<x < 2,1

Пример 2:

A – множество делителей 24;

B – множество делителей 18.

Понравилась статья? Поделитесь с друзьями!